What Is the Hidden Influence of NYC Building Codes on Residential Architecture?

What Is the Hidden Influence of NYC Building Codes on Residential Architecture?

Harlem black architects

Historical Context: Evolution of NYC Building Codes


The evolution of New York City building codes is a remarkable journey that provides insight right into just how the citys distinct architectural landscape has actually been shaped over time. What Is the Hidden Influence of NYC Building Codes on Residential Architecture? . These codes, often seen as simple regulations, have possessed a covert yet extensive impact on residential architecture, determining the type and feature of urban home.


The tale starts in the late 19th century with the Tenement Home Act of 1867, the first significant legislative effort to deal with the awful living conditions in New york cities swiftly growing slums. This law mandated basic hygienic conditions, including the need for one toilet per 20 citizens and fire escapes on buildings. Although primary, it noted the start of a regulatory framework intended to safeguard public health and safety and security, accidentally influencing architectural design by presenting components like enhanced ventilation and natural light.


As the city broadened, so did the intricacy of its building codes. The 1916 Zoning Resolution was a groundbreaking development, reacting to the urban thickness that threatened to obstruct sunlight and air movement in the city roads. This regulation introduced the principle of "" troubles,"" requiring structures to taper as they climbed, properly giving birth to the renowned NYC skyscraper shape. Architects embraced this obstacle, resulting in ingenious styles that stabilized visual charm with useful necessity.


Rapid onward to the mid-20th century, and the intro of the Multiple House Law in 1929 more highlighted health and wellness, focusing on fireproofing and access to open rooms. This period additionally saw a raising understanding of the social implications of architecture, with building codes beginning to show concerns concerning price and availability, establishing the stage for contemporary residential advancements.


The post-war boom caused new products and technologies, prompting updates to the codes to suit innovations like strengthened concrete and steel. The 1968 Building ordinance overhaul marked a significant innovation effort, standardizing many techniques and establishing new standards for structural integrity and safety. These adjustments played a vital role in shaping the citys residential architecture, allowing for even more imaginative expressions while ensuring the security of its citizens.


In current years, sustainability has actually ended up being a main theme in NYC building codes, mirroring broader ecological worries. The Green Building Regulation of 2005 and succeeding updates have mandated power efficiency requirements, affecting the design and construction of residential structures to include features like green roof coverings and energy-efficient systems. These codes have not only added to reducing the citys carbon impact but have additionally spurred architectural advancement, as developers seek to combine ecological responsibility with urban living.


Throughout its background, New york cities building codes have actually been more than simply a 20

Influence On Design Visual Appeals and Materials


New York City, a bustling metropolis renowned for its architectural wonders, is a city where the sky line is perpetually developing. However, below the surface of this ever-changing cityscape lies a complicated web of building codes that considerably affect the design visual appeals and materials used in residential architecture. These regulations, while primarily focused on making sure security, sustainability, and ease of access, have a profound and in some cases refined impact on the visual choices and material choices of architects and designers.


Among one of the most substantial methods NYC building codes influence design aesthetic appeals is via zoning regulations. These codes determine the elevation, bulk, and trouble demands for buildings, which in turn influence the total shape and type of residential frameworks. As an example, the renowned "" wedding-cake"" design of early 20th-century high-rise buildings was substantiated of zoning laws that called for problems to allow sunshine to get to the roads below. Today, these regulations remain to shape the city's architectural profile, engaging architects to artistically navigate these restraints to produce innovative layouts that comply with the regulation while still accomplishing visual charm.


In addition, building codes in NYC required strict energy efficiency and sustainability criteria, which have resulted in a shift in the products utilized in residential construction.

What Is the Hidden Influence of NYC Building Codes on Residential Architecture? - House architects in New York

  1. Harlem black architects
  2. Brownstone architects NYC
  3. House architects in New York
The drive in the direction of sustainability has urged using materials that are not only eco-friendly yet likewise aesthetically pleasing. For example, the boosted use green roof coverings, photovoltaic panels, and high-performance glazing systems is a direct feedback to these codes. These materials not just contribute to a structures sustainability qualifications but also influence its aesthetic and tactile high qualities, commonly resulting in a modern, sleek look that is now identified with contemporary urban living.


Fire security regulations also play a vital function in identifying the products utilized in NYC residential architecture. Building codes require making use of fire-resistant products, which has actually traditionally limited the selection to certain kinds of rock, block, and concrete. While these materials have a classic allure, modern-day innovations have actually expanded the palette to consist of fire-rated timber and advanced composites, enabling higher flexibility in design while keeping conformity with safety and security criteria. This has actually made it possible for architects to explore new aesthetic opportunities, blending conventional and contemporary styles in novel means.

What Is the Hidden Influence of NYC Building Codes on Residential Architecture? - Brownstone architects NYC

  • Exclusive architecture firms NYC
  • Bronx residential architects
  • Modern residential architects NYC


In addition, ease of access requirements have motivated architects to reconsider the spatial format and design of residential buildings. Functions such as larger doorways, ramps, and accessible courses need to be effortlessly integrated right into the design, influencing not just the functionality but additionally the visual consistency of a space. This requirement has actually driven a trend towards open layout and minimalistic designs, where simpleness and availability coalesce to create rooms that are both lovely and

Sustainability and Power Effectiveness Demands


New York City City, a dynamic metropolis renowned for its renowned skyline and architectural marvels, has actually long gone to the forefront of dynamic urban development. However, beneath its imposing glass facades and historic brownstones lies a nuanced governing structure that dramatically influences residential architecture: the citys building codes. Central to these codes are sustainability and energy performance requirements, which play a hidden yet extensive duty fit the design and functionality of residential structures.


The development of New york cities building codes mirrors a growing commitment to environmental stewardship and energy preservation. As worries about environment modification and source depletion heighten, the citys regulations have increasingly prioritized green building methods. This shift is evident in requireds for energy-efficient devices, enhanced insulation, and the combination of renewable energy resources, all focused on lowering the carbon impact of residential structures.


One of the vital influences of these sustainability needs is the promote ingenious architectural options that mix type with feature. Architects and programmers are currently tested to produce styles that not just satisfy visual requirements yet additionally stick to strict power performance criteria. This has brought about the consolidation of innovative innovations such as green roof coverings, solar panels, and advanced heating and cooling systems. These elements not just improve the power efficiency of structures yet likewise add to the overall wellness and well-being of citizens by advertising better interior air top quality and reducing energy costs.


Furthermore, New york cities building codes urge the use of sustainable materials, which has a ripple effect on the construction sector. By prioritizing products with reduced environmental influence, such as recycled steel, recovered timber, and low-VOC paints, the city fosters a market for environment-friendly items and techniques. This emphasis on sustainability expands past specific buildings, influencing community development patterns and advertising urban densification as a way to minimize sprawl and preserve green areas.


The concealed impact of these codes is additionally noticeable in the method they drive the retrofitting of existing structures. Most of New york cities residential frameworks are decades, if not centuries, old. The citys power effectiveness needs incentivize the innovation of these buildings, ensuring they satisfy existing standards without jeopardizing their historic personality. This not just protects the architectural heritage of the city but additionally improves the livability and energy performance of its real estate stock.


Finally, the concealed influence of NYCs building codes on residential architecture is extensive and multifaceted. By embedding sustainability and power effectiveness needs into the regulative structure, the city not just addresses pressing ecological issues but also cultivates technology and resilience in its residential architecture. As NYC continues to progress, these codes will certainly play an essential role in shaping a 52

Difficulties and Opportunities for Architects


The skyline of New York City is a testament to human ambition, creative thinking, and the power of architectural innovation. Yet, behind the renowned shapes and avant-garde designs lies an intricate web of building codes that wield a considerable impact over residential architecture. These codes, frequently perceived merely as governing obstacles, lug covert implications that form the extremely essence of exactly how architects come close to the design and construction of living rooms in among the globes most vibrant urban landscapes.


At the heart of New york cities building codes is a double required: ensuring security and advertising public welfare. These regulations determine every little thing from structural integrity and fire safety to access and power effectiveness. For architects, this equates into a harmonizing act in between imaginative expression and conformity with a comprehensive set of standards. On one hand, these codes guarantee that architectural developments contribute positively to the urban setting by securing homeowners and advertising sustainable methods. On the other, they can impose restraints that restrict architectural liberty and development.


One of one of the most significant methods which NYC building codes influence residential architecture is through zoning laws. These laws manage land usage and determine the size, shape, and function of structures. For architects, zoning regulations can either offer a canvas of possibility or a maze of limitations. For instance, height restrictions and flooring location ratios can substantially impact the sky line silhouette and the density of residential tasks. This needs architects to be both planners and musicians, working within these constraints to make the most of space and visual charm.


Another concealed influence of building codes is the drive towards sustainability. New york cities codes have actually increasingly incorporated green building requirements, pressing architects to integrate energy-efficient systems and sustainable materials right into their styles. This not just challenges architects to introduce but likewise opens new methods for creativity in making ecologically accountable and resource-efficient residential structures. The adoption of green roofings, solar panels, and progressed insulation methods are several of the ways architects are redefining urban living in reaction to these codes. Brownstone architects NYC


Additionally, accessibility criteria mandated by building codes have profound effects on residential architecture. The demand for buildings to be obtainable to people with impairments means architects need to take into consideration the inclusivity of their layouts. This can influence every little thing from the design of floor plans to the selection of products and the unification of assistive modern technologies. While these standards make certain that residential spaces rate to all, they also require a thoughtful strategy to design that transcends simple visual appeals.


Finally, the covert impact of NYC building codes on residential architecture is both a challenge and a possibility for architects. While these codes enforce certain limitations, they additionally function as a driver for technology, pressing architects to assume

Driving Directions on the maps

Our Batchgeo Maps

View Architecture Firms Near Me in a full screen map

Residential Architect New York


Baobab Architects P.C. Videos

Citations and other links

An architect, 1893.
Occupation
Names Architect
Occupation type
Profession
Activity sectors
Architecture
Civil engineering
Structural engineering
Construction
Project management
Urban planning
Interior design
Visual arts
Description
Competencies Engineering, technical knowledge, building design, planning and management skills
Education required
See professional requirements

An architect is a person who plans, designs, and oversees the construction of buildings.[1] To practice architecture means to provide services in connection with the design of buildings and the space within the site surrounding the buildings that have human occupancy or use as their principal purpose.[2] Etymologically, the term architect derives from the Latin architectus,[3] which derives from the Greek[4] (arkhi-, chief + tekton, builder), i.e., chief builder.[5]

The professional requirements for architects vary from location to location. An architect's decisions affect public safety, and thus the architect must undergo specialised training consisting of advanced education[6] and a practicum (or internship) for practical experience to earn a license to practice architecture. Practical, technical, and academic requirements for becoming an architect vary by jurisdiction though the formal study of architecture in academic institutions has played a pivotal role in the development of the profession.

Origins

[edit]

Throughout ancient and medieval history, most architectural design and construction was carried out by artisans—such as stone masons and carpenters—who rose to the role of master builders. Until modern times, there was no clear distinction between architect and engineer. In Europe, the titles architect and engineer were primarily geographical variations that referred to the same person, often used interchangeably.[7][8] "Architect" derives from Greek á¼€ρχιτέκτων (arkhitéktōn, "master builder," "chief tektōn).[5]

Filippo Brunelleschi is revered as one of the most inventive and gifted architects in history.[9]

It is suggested that various developments in technology and mathematics allowed the development of the professional 'gentleman' architect, separate from the hands-on craftsman. Paper was not used in Europe for drawing until the 15th century but became increasingly available after 1500. Pencils were used for drawing by 1600. The availability of both paper and pencils allowed pre-construction drawings to be made by professionals.[10] Concurrently, the introduction of linear perspective and innovations such as the use of different projections to describe a three-dimensional building in two dimensions, together with an increased understanding of dimensional accuracy, helped building designers communicate their ideas.[10] However, development was gradual and slow-going. Until the 18th century, buildings continued to be designed and set out by craftsmen, with the exception of high-status projects.[10][11]

Architecture

[edit]

In most developed countries only those qualified with an appropriate license, certification, or registration with a relevant body (often a government) may legally practice architecture. Such licensure usually requires a university degree, successful completion of exams, and a training period.[12] Representation of oneself as an architect through the use of terms and titles were restricted to licensed individuals by law, although in general, derivatives such as architectural designer were not legally protected.

To practice architecture implies the ability to practice independently of supervision. The term building design professional (or design professional), by contrast, is a much broader term that includes professionals who practice independently under an alternate profession, such as engineering professionals, or those who assist in the practice of architecture under the supervision of a licensed architect, such as intern architects. In many places, independent, non-licensed individuals may perform design services outside of professional restrictions, such as the design of houses or other smaller structures.

Practice

[edit]

In the architectural profession, technical and environmental knowledge, design, and construction management require an understanding of business as well as design. However, design is the driving force throughout the project and beyond. An architect accepts a commission from a client. The commission might involve preparing feasibility reports, building audits, and designing a building or several buildings, structures, and the spaces among them. The architect participates in developing the requirements the client wants in the building. Throughout the project (planning to occupancy), the architect coordinates a design team. Structural, mechanical, and electrical engineers are hired by the client or architect, who must ensure that the work is coordinated to construct the design.

Design role

[edit]

The architect, once hired by a client, is responsible for creating a design concept that meets the requirements of that client and provides a facility suitable to the required use. The architect must meet with and ask questions to the client, to ascertain all the requirements (and nuances) of the planned project.[13]

Often, the full brief is not clear in the beginning. It involves a degree of risk in the design undertaking. The architect may make early proposals to the client which may rework the terms of the brief. The "program" (or brief) is essential to producing a project that meets all the needs of the owner. This becomes a guide for the architect in creating the design concept.

Design proposal(s) are generally expected to be both imaginative and pragmatic. Much depends upon the time, place, finance, culture, and available crafts and technology in which the design takes place. The extent and nature of these expectations will vary. Foresight is a prerequisite when designing buildings as it is a very complex and demanding undertaking.

Any design concept during the early stage of its generation must take into account a great number of issues and variables, including the qualities of the space(s), the end-use and life-cycle of these proposed spaces, connections, relations, and aspects between spaces, including how they are put together, and the impact of proposals on the immediate and wider locality. The selection of appropriate materials and technology must be considered, tested, and reviewed at an early stage in the design to ensure there are no setbacks (such as higher-than-expected costs) which could occur later in the project.

The site and its surrounding environment, as well as the culture and history of the place, will also influence the design. The design must also balance increasing concerns with environmental sustainability. The architect may introduce (intentionally or not), aspects of mathematics and architecture, new or current architectural theory, or references to architectural history.

A key part of the design is that the architect often must consult with engineers, surveyors, and other specialists throughout the design, ensuring that aspects such as structural supports and air conditioning elements are coordinated. The control and planning of construction costs are also part of these consultations. Coordination of the different aspects involves a high degree of specialized communication, including advanced computer technology such as building information modeling (BIM), computer-aided design (CAD), and cloud-based technologies. Finally, at all times, the architect must report back to the client, who may have reservations or recommendations which might introduce further variables into the design.

Architects also deal with local and federal jurisdictions regarding regulations and building codes. The architect might need to comply with local planning and zoning laws such as required setbacks, height limitations, parking requirements, transparency requirements (windows), and land use. Some jurisdictions require adherence to design and historic preservation guidelines. Health and safety risks form a vital part of the current design, and in some jurisdictions, design reports and records are required to include ongoing considerations of materials and contaminants, waste management and recycling, traffic control, and fire safety.

Means of design

[edit]

Previously, architects employed drawings[10] to illustrate and generate design proposals. While conceptual sketches are still widely used by architects,[14] computer technology has now become the industry standard.[15] Furthermore, design may include the use of photos, collages, prints, linocuts, 3D scanning technology, and other media in design production. Increasingly, computer software is shaping how architects work. BIM technology allows for the creation of a virtual building that serves as an information database for the sharing of design and building information throughout the life-cycle of the building's design, construction, and maintenance.[16] Virtual reality (VR) presentations are becoming more common for visualizing structural designs and interior spaces from the point-of-view perspective.

Environmental role

[edit]

Since modern buildings are known to release carbon into the atmosphere, increasing controls are being placed on buildings and associated technology to reduce emissions, increase energy efficiency, and make use of renewable energy sources. Renewable energy sources may be designed into the proposed building by local or national renewable energy providers. As a result, the architect is required to remain abreast of current regulations that are continually being updated. Some new developments exhibit extremely low energy use or passive solar building design.[17] However, the architect is also increasingly being required to provide initiatives in a wider environmental sense. Examples of this include making provisions for low-energy transport, natural daylighting instead of artificial lighting, natural ventilation instead of air conditioning, pollution, and waste management, use of recycled materials, and employment of materials which can be easily recycled.

Construction role

[edit]

As the design becomes more advanced and detailed, specifications and detail designs are made of all the elements and components of the building. Techniques in the production of a building are continually advancing which places a demand on the architect to ensure that he or she remains up to date with these advances.

Depending on the client's needs and the jurisdiction's requirements, the spectrum of the architect's services during each construction stage may be extensive (detailed document preparation and construction review) or less involved (such as allowing a contractor to exercise considerable design-build functions).

Architects typically put projects to tender on behalf of their clients, advise them on the award of the project to a general contractor, facilitate and administer a contract of agreement, which is often between the client and the contractor. This contract is legally binding and covers a wide range of aspects, including the insurance and commitments of all stakeholders, the status of the design documents, provisions for the architect's access, and procedures for the control of the works as they proceed. Depending on the type of contract used, provisions for further sub-contract tenders may be required. The architect may require that some elements be covered by a warranty which specifies the expected life and other aspects of the material, product, or work.

In most jurisdictions prior notification to the relevant authority must be given before commencement of the project, giving the local authority notice to carry out independent inspections. The architect will then review and inspect the progress of the work in coordination with the local authority.

The architect will typically review contractor shop drawings and other submittals, prepare and issue site instructions, and provide Certificates for Payment to the contractor (see also Design-bid-build) which is based on the work done as well as any materials and other goods purchased or hired in the future. In the United Kingdom and other countries, a quantity surveyor is often part of the team to provide cost consulting. With large, complex projects, an independent construction manager is sometimes hired to assist in the design and management of the construction.

In many jurisdictions mandatory certification or assurance of the completed work or part of the work is required. This demand for certification entails a high degree of risk; therefore, regular inspections of the work as it progresses on site is required to ensure that the design is in compliance itself as well as following all relevant statutes and permissions.

Alternate practice and specialisations

[edit]

Recent decades have seen the rise of specialisations within the profession. Many architects and architectural firms focus on certain project types (e.g. healthcare, retail, public housing, and event management), technological expertise, or project delivery methods. Some architects specialise in building code, building envelope, sustainable design, technical writing, historic preservation(US) or conservation (UK), and accessibility.

Many architects elect to move into real-estate (property) development, corporate facilities planning, project management, construction management, chief sustainability officers interior design, city planning, user experience design, and design research.

Professional requirements

[edit]

Although there are variations in each location, most of the world's architects are required to register with the appropriate jurisdiction. Architects are typically required to meet three common requirements: education, experience, and examination.

Basic educational requirement generally consist of a university in architecture. The experience requirement for degree candidates is usually satisfied by a practicum or internship (usually two to three years). Finally, a Registration Examination or a series of exams is required prior to licensure.

Professionals who engaged in the design and supervision of construction projects before the late 19th century were not necessarily trained in a separate architecture program in an academic setting. Instead, they often trained under established architects. Prior to modern times, there was no distinction between architects and engineers and the title used varied depending on geographical location. They often carried the title of master builder[18][19] or surveyor after serving a number of years as an apprentice (such as Sir Christopher Wren). The formal study of architecture in academic institutions played a pivotal role in the development of the profession as a whole, serving as a focal point for advances in architectural technology and theory. The use of "Architect" or abbreviations such as "Ar." as a title attached to a person's name was regulated by law in some countries.

Fees

[edit]

Architects' fee structure was typically based on a percentage of construction value, as a rate per unit area of the proposed construction, hourly rates, or a fixed lump sum fee. Combination of these structures were also common. Fixed fees were usually based on a project's allocated construction cost and could range between 4 and 12% of new construction cost for commercial and institutional projects, depending on the project's size and complexity. Residential projects ranged from 12 to 20%. Renovation projects typically commanded higher percentages such as 15–20%.[20]

Overall billings for architectural firms range widely, depending on their location and economic climate. Billings have traditionally been dependent on local economic conditions, but with rapid globalization, this is becoming less of a factor for large international firms. Salaries could also vary depending on experience, position within the firm (i.e. staff architect, partner, or shareholder, etc.), and the size and location of the firm.

Professional organizations

[edit]

A number of national professional organizations exist to promote career and business development in architecture.

  • The International Union of Architects (UIA)
  • The American Institute of Architects (AIA) US
  • Royal Institute of British Architects (RIBA) UK
  • Architects Registration Board (ARB) UK
  • The Australian Institute of Architects (AIA) Australia
  • The South African Institute of Architects (SAIA) South Africa
  • Association of Consultant Architects (ACA) UK[21]
  • Association of Licensed Architects (ALA) US
  • The Consejo Profesional de Arquitectura y Urbanismo (CPAU) Argentina
  • Indian Institute of Architects (IIA) & Council of Architecture (COA) India
  • The Jamaican Institute of Architects (JIA)
  • The National Organization of Minority Architects (NOMA) US[22]

Prizes and awards

[edit]
Ceremony for the 2019 Aga Khan Award for Architecture, presenting the award for the Arcadia Education Centre

A wide variety of prizes is awarded by national professional associations and other bodies, recognizing accomplished architects, their buildings, structures, and professional careers.

The most lucrative award an architect can receive is the Pritzker Prize, sometimes termed the "Nobel Prize for architecture". The inaugural Pritzker Prize winner was Philip Johnson who was cited as having "50 years of imagination and vitality embodied in a myriad of museums, theatres libraries, houses gardens and corporate structures". The Pritzker Prize has been awarded for forty-two straight editions without interruption, and there are now 22 countries with at least one winning architect. Other prestigious architectural awards are the Royal Gold Medal, the AIA Gold Medal (US), AIA Gold Medal (Australia), and the Praemium Imperiale.[23]

Architects in the UK who have made contributions to the profession through design excellence or architectural education or have in some other way advanced the profession might, until 1971, be elected Fellows of the Royal Institute of British Architects and can write FRIBA after their name if they feel so inclined. Those elected to chartered membership of the RIBA after 1971 may use the initials RIBA but cannot use the old ARIBA and FRIBA. An honorary fellow may use the initials Hon. FRIBA, and an international fellow may use the initials Int. FRIBA. Architects in the US who have made contributions to the profession through design excellence or architectural education or have in some other way advanced the profession are elected Fellows of the American Institute of Architects and can write FAIA after their name. Architects in Canada who have made outstanding contributions to the profession through contributions to research, scholarship, public service, or professional standing to the good of architecture in Canada or elsewhere may be recognized as Fellows of the Royal Architectural Institute of Canada and can write FRAIC after their name. In Hong Kong, those elected to chartered membership may use the initial HKIA, and those who have made a special contribution after nomination and election by the Hong Kong Institute of Architects (HKIA), may be elected as fellow members of HKIA and may use FHKIA after their name.

See also

[edit]
  • Architectural designer
  • Architectural drawing
  • Architectural engineering
  • Architectural technologist
  • Building officials
  • Chartered architect
  • Civil engineer
  • Construction engineering
  • Construction manager
  • Drafter
  • Expression (architecture)
  • Industrial architecture
  • Landscape architect
  • List of architects
  • Starchitect
  • State architect
  • Structural engineering
  • Urban designer
  • Urban planner
  • Women in architecture

References

[edit]
  1. ^ "What's the difference between an architect and a building designer?". BUILD. Archived from the original on 2021-03-02. Retrieved 2021-03-03.
  2. ^ "The Nova Scotia Legislature". Office of the Legislative Counsel. Nova Scotia House of Assembly. 2006. Archived from the original on July 21, 2011. Retrieved 8 March 2019.
  3. ^ "Etymology in Architecture: Tracing the Language of Design to its Roots". ArchDaily. 2018-07-30. Archived from the original on 2021-05-26. Retrieved 2021-03-03.
  4. ^ "The Meaning of the Word Architect | The History of Design-Build". New England Design & Construction. 2019-10-24. Archived from the original on 2021-05-26. Retrieved 2021-03-03.
  5. ^ a b Harper, Douglas. "architect". Online Etymology Dictionary. Archived from the original on 5 December 2022. Retrieved 5 December 2022.
  6. ^ Czcibor-Piotrowski, Andrzej (2000). "The Profession and Discipline of Architecture: Practice and Education". Discipline of Architecture. University of Minnesota Press. p. 293. ISBN 978-0-8166-3665-5. JSTOR 10.5749/j.cttttqm2.18.
  7. ^ Murray, Peter (1986). Burckhardt, Jacob (ed.). The Architecture of the Italian Renaissance. Knopf Doubleday Publishing Group. p. 242. ISBN 0-8052-1082-2.
  8. ^ "Civil Engineering Defined - Civil Engineering Definitions and History". SMW Engineering Group, Inc. Archived from the original on 25 April 2012. Retrieved 8 March 2019.
  9. ^ "Filippo Brunelleschi". Totally History. 11 October 2012. Archived from the original on 4 July 2017. Retrieved 8 March 2019.
  10. ^ a b c d Pacey, Arnold (2007). Medieval Architectural Drawing: English Craftsmen's Methods and Their Later Persistence (c.1200–1700). Stroud: Tempus Publishing. pp. 225–227. ISBN 978-0-7524-4404-8. Archived from the original on 2023-12-10. Retrieved 2019-08-20.
  11. ^ Vardhan, Harsh. "Different types of work by architects". Archibuddy. Archived from the original on 17 March 2018. Retrieved 17 March 2018.
  12. ^ "The Basics". NCARB – National Council of Architectural Registration Boards. 2017-01-23. Archived from the original on 2020-05-01. Retrieved 2020-04-29.
  13. ^ "Architects – What do Architects do?". StudentScholarships.org. Archived from the original on 2020-05-13. Retrieved 2020-04-29.
  14. ^ Rosenfield, Karissa (5 June 2015). "17 Napkin Sketches by Famous Architects". ArchDaily. ISSN 0719-8884. Archived from the original on 5 March 2019. Retrieved 8 March 2019.
  15. ^ Rybczynski, Witold (30 March 2011). "Think Before You Build". Slate. The Slate Group. Archived from the original on 14 June 2018. Retrieved 8 December 2015 – via Graham Holdings Company.
  16. ^ "Frequently Asked Questions About the National BIM Standard-United States". National BIM Standard. National Institute of Building Sciences. Archived from the original on 16 October 2014. Retrieved 17 October 2014.
  17. ^ "What is a Passive House?". passipedia.org. Archived from the original on 2015-12-08. Retrieved 2015-12-08.
  18. ^ Routman, Marcus. Master Builders of Byzantium.[full citation needed]
  19. ^ Boero, Dina (Spring 2022). "Who Built Qal'at Sim'ān?". Journal of Late Antiquity. 15 (1): 231–276. doi:10.1353/jla.2022.0007. ProQuest 2813607353.
  20. ^ "RIBA". Archived from the original on 2023-08-10. Retrieved 2023-08-09.
  21. ^ "Association of Consultant Architects". Archived from the original on 2020-04-11. Retrieved 2020-04-11.
  22. ^ "National Organization of Minority Architects". Archived from the original on 2021-10-20. Retrieved 2021-10-20.
  23. ^ "5 Highly Prestigious Awards in Architecture That You Should Know". Arch2O.com. 2016-11-07. Archived from the original on 2019-12-10. Retrieved 2020-04-30.

 

 

New York most commonly refers to:

  • New York (state), a state in the northeastern United States
  • New York City, the most populous city in the United States, located in the state of New York

New York may also refer to:

Film and television

[edit]
  • New York (1916 film), a lost American silent comedy drama by George Fitzmaurice
  • New York (1927 film), an American silent drama by Luther Reed
  • New York (2009 film), a Bollywood film by Kabir Khan
  • New York: A Documentary Film, a film by Ric Burns
  • "New York" (Glee), an episode of Glee

Literature

[edit]
  • New York (Burgess book), a 1976 work of travel and observation by Anthony Burgess
  • New York (Morand book), a 1930 travel book by Paul Morand
  • New York (novel), a 2009 historical novel by Edward Rutherfurd
  • New York (magazine), a bi-weekly magazine founded in 1968

Music

[edit]
  • New York EP, a 2012 EP by Angel Haze
  • "New York" (Angel Haze song)
  • New York (album), a 1989 album by Lou Reed
  • "New York" (Eskimo Joe song) (2007)
  • "New York" (Ja Rule song) (2004)
  • "New York" (Paloma Faith song) (2009)
  • "New York" (St. Vincent song) (2017)
  • "New York" (Snow Patrol song) (2011)
  • "New York" (U2 song) (2000)
  • New York, a 2006 album by Antti Tuisku
  • "New York", a 1977 song by the Sex Pistols from Never Mind the Bollocks, Here's the Sex Pistols

Places

[edit]

United Kingdom

[edit]
  • New York, Lincolnshire
  • New York, North Yorkshire
  • New York, Tyne and Wear

United States

[edit]

New York state

[edit]
  • New York metropolitan area, the region encompassing New York City and its suburbs
  • New York County, covering the same area as the New York City borough of Manhattan
  • New York, the US Postal Service address designating the Manhattan borough
  • New York University
  • Province of New York, the British colony preceding the state of New York

Other states

[edit]
  • New York, Florida, an unincorporated community in Santa Rosa County
  • New York, Iowa, a former town in Wayne County
  • New York, Kentucky, an unincorporated community in Ballard County
  • New York, Missouri, a ghost town in Scott County
  • New York, Texas, an unincorporated community in Henderson County
  • New York Mountain, a mountain in Colorado
  • New York Mountains, a mountain range in California

Ukraine

[edit]
  • New York, Ukraine, a settlement in Donetsk Oblast

Ships

[edit]

Many ships have been named after the city or state of New York. See:

  • List of ships named New York
  • List of ships named City of New York
  • List of ships named New York City

Sports

[edit]

American football

[edit]
  • New York Giants, members of the East Division of the National Football Conference of the NFL (1925–present)
  • New York Jets, members of the East Division of the American Football Conference of the NFL (1960–present)
  • New York (World Series of Football), a professional football team for the World Series of Football (1902–1903)

Baseball

[edit]
  • New York Mets, members of the East Division of the National League of MLB (1962–present)
  • New York Yankees, members of the East Division of the American League of MLB (1903–present)
  • New York Giants, a National League of MLB team that later became the San Francisco Giants (1885–1958)

Hockey

[edit]
  • New York Islanders, members of the Metropolitan Division of the Eastern Conference of the NHL (1972–present)
  • New York Rangers, members of the Metropolitan Division of the Eastern Conference of the NHL (1926–present)

Soccer

[edit]
  • New York City FC, a professional soccer team based in New York City that competes in the Eastern Conference of MLS (2015–present)
  • New York Red Bulls, a professional soccer team that competes in the Eastern Conference of MLS (1996–present)
  • New York Stadium in South Yorkshire, home ground of Rotherham United F.C.

Other sports

[edit]
  • New York GAA, a county board of the Gaelic Athletic Association outside Ireland, responsible for Gaelic games in the New York metropolitan area
  • New York Knicks, a professional basketball team, part of the Atlantic Division of the Eastern Conference in the NBA

Other uses

[edit]
  • New York (pinball), a 1976 pinball machine by Gottlieb
  • New York (1983 typeface), an Apple font set for original Macintosh computers
  • New York (2019 typeface), a font set for developing software on Apple platforms
  • New York Harbor, a waterfront in New York City
  • Brooklyn Navy Yard, referred to as New York in naval histories
  • Tiffany Pollard (born 1982), star of the reality TV show I Love New York who is nicknamed New York

See also

[edit]
  • New York City (disambiguation)
  • New York Cosmos (disambiguation)
  • New York, New York (disambiguation)
  • Nova Iorque, Brazilian municipality in the state of Maranhão
  • Nowy Jork, former name of Łagiewniki, WÅ‚ocÅ‚awek County, Poland
  • NY (disambiguation)
  • All pages with titles beginning with New York
  • All pages with titles containing New York
Photo
Photo
Photo
Photo

Driving Directions in New York County


Driving Directions From Manhattan School of Music to Baobab Architects P.C.
Driving Directions From Apollo Theater to Baobab Architects P.C.
Driving Directions From Red Rooster Harlem to Baobab Architects P.C.
Driving Directions From Strawberry Fields to Baobab Architects P.C.
Driving Directions From Intrepid Museum to Baobab Architects P.C.
Driving Directions From RiseNY to Baobab Architects P.C.

Reviews for Baobab Architects P.C.


Baobab Architects P.C.

Andy Roberts

(5)

Very good architectural firm in NYC. Highly recommended !

Baobab Architects P.C.

Matthew Wittman

(5)

Taf was the perfect architect to complete our filing with the NYC DOB for the washer-drier we wished to install in our coop apartment.

Baobab Architects P.C.

Eric Schnider

(5)

Thank you Mr. Taf & team. We look forward to working with you again on another successful project. I hope by the this Covid pandemic will be history!

Baobab Architects P.C.

A Burke

(5)

Mr Mwandiambira, gave me a thorough explanation on what to expect in navigating the DOB's complex application submission process to get approval for alterations to my home. I was pleasantly surprised at how quickly an acceptable plan was composed. I would highly recommend Baobab Architects to anyone seeking a top quality architectural firm.

Baobab Architects P.C.

Amitava Misra

(5)

Baobab Architects is an architectural firm based in Brooklyn, New York City. NYC alteration type 1 architects, NYC alteration type 2 architects, affordable housing architects, or small development, NYC, and Baobab.

Frequently Asked Questions

We appreciate your budget-conscious mindset! Baobab Architects P.C. prioritizes transparency and meticulous planning to ensure your project stays within budget. Our team conducts thorough cost analyses, providing detailed estimates and regular updates. Explore our commitment to budget-friendly excellence at www.baobabarchitects.com/. Ready to embark on a financially savvy architectural journey? Contact us today!

Your curiosity warms our hearts! Baobab Architects P.C. specializes in enhancing your home's curb appeal with timeless and contemporary architectural designs. From captivating facades to strategic landscaping, we turn your residence into a masterpiece. Discover the possibilities by scheduling a consultation with our experts at www.baobabarchitects.com/. Let's embark on a journey to make your home a neighborhood gem!

Your interest in renovation warms our hearts! Baobab Architects P.C. brings unparalleled value to your renovation journey by seamlessly blending functionality, aesthetics, and innovative design. Our architects specialize in breathing new life into spaces, ensuring each project is a testament to your vision. Begin your renovation adventure by contacting us at www.baobabarchitects.com/. Let's transform your space into a masterpiece!